58 research outputs found

    Analyzing the Catalytic Role of Asp97 in the Methionine Aminopeptidase from \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    An active site aspartate residue, Asp97, in the methionine aminopeptidase (MetAPs) from Escherichia coli (EcMetAP-I) was mutated to alanine, glutamate, and asparagine. Asp97 is the lone carboxylate residue bound to the crystallographically determined second metal-binding site in EcMetAP-I. These mutant EcMetAP-I enzymes have been kinetically and spectroscopically characterized. Inductively coupled plasma–atomic emission spectroscopy analysis revealed that 1.0 ± 0.1 equivalents of cobalt were associated with each of the Asp97-mutated EcMetAP-Is. The effect on activity after altering Asp97 to alanine, glutamate or asparagine is, in general, due to a ∼ 9000-fold decrease in kca towards Met-Gly-Met-Met as compared to the wild-type enzyme. The Co(II) d–d spectra for wild-type, D97E and D97A EcMetAP-I exhibited very little difference in form, in each case, between the monocobalt(II) and dicobalt(II) EcMetAP-I, and only a doubling of intensity was observed upon addition of a second Co(II) ion. In contrast, the electronic absorption spectra of [Co_(D97N EcMetAP-I)] and [CoCo(D97N EcMetAP-I)] were distinct, as were the EPR spectra. On the basis of the observed molar absorptivities, the Co(II) ions binding to the D97E, D97A and D97N EcMetAP-I active sites are pentacoordinate. Combination of these data suggests that mutating the only nonbridging ligand in the second divalent metal-binding site in MetAPs to an alanine, which effectively removes the ability of the enzyme to form a dinuclear site, provides a MetAP enzyme that retains catalytic activity, albeit at extremely low levels. Although mononuclear MetAPs are active, the physiologically relevant form of the enzyme is probably dinuclear, given that the majority of the data reported to date are consistent with weak cooperative binding

    Optimal Dosing of Enoxaparin in Overweight and Obese Children

    Get PDF
    Aim:Current enoxaparin dosing guidelines in children are based on total bodyweight. This is potentially inappropriate in obese children as it may overestimate thedrug clearance. Current evidence suggests that obese children may require lower ini-tial doses of enoxaparin, therefore the aim of this work was to characterise the phar-macokinetics of enoxaparin in obese children and to propose a more appropriatedosing regimen.Methods:Data from 196 unique encounters of 160 children who received enoxa-parin treatment doses were analysed. Enoxaparin concentration was quantified usingthe chromogenic anti factor Xa (anti-Xa) assay. Patients provided a total of 552 anti-Xa samples. Existing published pharmacokinetic (PK) models were fitted and evalu-ated against our dataset using prediction-corrected visual predictive check plots(pcVPCs). A PK model was fitted using a nonlinear mixed-effects modelling approach.The fitted model was used to evaluate the current standard dosing and identify anoptimal dosing regimen for obese children.Results:Published models of enoxaparin pharmacokinetics in children did not capturethe pharmacokinetics of enoxaparin in obese children as shown by pcVPCs. A one-compartment model with linear elimination best described the pharmacokinetics ofenoxaparin. Allometrically scaled fat-free mass with an estimated exponent of 0.712(CI 0.66-0.76) was the most influential covariate on clearance while linear fat-freemass was selected as the covariate on volume. Simulations from the model showedthat fat-free mass-based dosing could achieve the target anti-Xa activity at steadystate in 77.5% and 78.2% of obese and normal-weight children, respectively, com-pared to 65.2% and 75.5% for standard total body weight-based dosing.Conclusions:A population PK model that describes the time course of anti-Xa activ-ity of enoxaparin was developed in a paediatric population. Based on this model, aunified dosing regimen was proposed that will potentially improve the success rate oftarget attainment in overweight/obese patients without the need for patient bodysize categorisation. Therefore, prospective validation of the proposed approach iswarranted

    Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review

    Get PDF
    Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. L-arginine, an endogenous amino acid, was reported in clinical studies in adults to improve cardiovascular function in hypertension, pulmonary hypertension, pre-eclampsia, angina, and mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. L-citrulline, a natural precursor of L-arginine, is more bioavailable than L-arginine because of hepatic first-pass metabolism avoidance and longer circulation time. Although not yet well studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases of children. However, optimal clinical development of arginine or citrulline in children is dependent on more information about pharmacokinetics and exposure-response relationships at appropriate ages and under relevant disease states. This article summarizes the pre-clinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as baseline variation of arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are not enough to inform the optimal design of clinical studies, especially those in children. Successful bench to bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic-pharmacodynamic studies, along with pharmacometric approaches

    Current use of complementary and conventional medicine for treatment of pediatric patients with gastrointestinal disorders

    Get PDF
    Infants, children, and adolescents are at risk of experiencing a multitude of gastrointestinal disorders (GID). These disorders can adversely affect the quality of life or be life-threatening. Various interventions that span the conventional and complementary therapeutic categories have been developed. Nowadays, parents increasingly seek complementary options for their children to use concurrently with conventional therapies. Due to the high prevalence and morbidity of diarrhea, constipation, and irritable bowel syndrome (IBS) in children, in this review, we decided to focus on the current state of the evidence for conventional and complementary therapies used for the treatment of these diseases in children. Diarrhea treatment focuses on the identification of the cause and fluid management. Oral rehydration with supplementation of deficient micronutrients, especially zinc, is well established and recommended. Some probiotic strains have shown promise in reducing the duration of diarrhea. For the management of constipation, available clinical trials are insufficient for conclusive recommendations of dietary modifications, including increased use of fruit juice, fiber, and fluid. However, the role of laxatives as conventional treatment is becoming more established. Polyethylene glycol is the most studied, with lactulose, milk of magnesia, mineral oil, bisacodyl, and senna presenting as viable alternatives. Conventional treatments of the abdominal pain associated with IBS are poorly studied in children. Available studies investigating the effectiveness of antidepressants on abdominal pain in children with IBS were inconclusive. At the same time, probiotics and peppermint oil have a fair record of benefits and safety. The overall body of evidence indicates that a careful balance of conventional and complementary treatment strategies may be required to manage gastrointestinal conditions in children

    Project #91: Optimizing Vascular Access to Reduce CLABSI

    Get PDF
    Henry Ford Macomb Hospital experienced an increase in Central Line Associated Bloodstream Infections (CLABSI) in 2021. A significant portion were occurring in the MICU and were associated with Candida sp. Bloodstream infections negatively impact patient outcomes, provider workload, and are costly, with a median cost of $48,108 based on a meta-analysis conducted by AHRQ in 2017. By end of 2022, HFM aimed to reduce CLABSI incidence by 50%.https://scholarlycommons.henryford.com/qualityexpo2023/1004/thumbnail.jp

    Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the global burden of disease study 2017

    Get PDF
    © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods: Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings: In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation: Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding: Bill & Melinda Gates Foundation

    Optimal Dosing of Enoxaparin in Overweight and Obese Children

    Get PDF
    Aim:Current enoxaparin dosing guidelines in children are based on total bodyweight. This is potentially inappropriate in obese children as it may overestimate thedrug clearance. Current evidence suggests that obese children may require lower ini-tial doses of enoxaparin, therefore the aim of this work was to characterise the phar-macokinetics of enoxaparin in obese children and to propose a more appropriatedosing regimen.Methods:Data from 196 unique encounters of 160 children who received enoxa-parin treatment doses were analysed. Enoxaparin concentration was quantified usingthe chromogenic anti factor Xa (anti-Xa) assay. Patients provided a total of 552 anti-Xa samples. Existing published pharmacokinetic (PK) models were fitted and evalu-ated against our dataset using prediction-corrected visual predictive check plots(pcVPCs). A PK model was fitted using a nonlinear mixed-effects modelling approach.The fitted model was used to evaluate the current standard dosing and identify anoptimal dosing regimen for obese children.Results:Published models of enoxaparin pharmacokinetics in children did not capturethe pharmacokinetics of enoxaparin in obese children as shown by pcVPCs. A one-compartment model with linear elimination best described the pharmacokinetics ofenoxaparin. Allometrically scaled fat-free mass with an estimated exponent of 0.712(CI 0.66-0.76) was the most influential covariate on clearance while linear fat-freemass was selected as the covariate on volume. Simulations from the model showedthat fat-free mass-based dosing could achieve the target anti-Xa activity at steadystate in 77.5% and 78.2% of obese and normal-weight children, respectively, com-pared to 65.2% and 75.5% for standard total body weight-based dosing.Conclusions:A population PK model that describes the time course of anti-Xa activ-ity of enoxaparin was developed in a paediatric population. Based on this model, aunified dosing regimen was proposed that will potentially improve the success rate oftarget attainment in overweight/obese patients without the need for patient bodysize categorisation. Therefore, prospective validation of the proposed approach iswarranted
    corecore